【备考2025】中考数学真题2022-2024分类精编精练7 二次函数(含解析)
【备考2025】中考数学真题2022-2024分类精编精练7 二次函数
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.(2023·浙江·)一个球从地面竖直向上弹起时的速度为10米/秒,经过(秒)时球距离地面的高度(米)适用公式,那么球弹起后又回到地面所花的时间(秒)是( )
A.5 B.10 C.1 D.2
2.(2022·浙江温州·)已知点都在抛物线上,点A在点B左侧,下列选项正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
3.(2022·浙江绍兴·)已知抛物线的对称轴为直线,则关于x的方程的根是( )
A.0,4 B.1,5 C.1,-5 D.-1,5
4.(2022·浙江宁波·)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为( )
A. B. C. D.
5.(2022·浙江湖州·)将抛物线向上平移3个单位长度得到的抛物线是( )
A. B. C. D.
6.(2022·浙江衢州·)已知二次函数,当时,的最小值为,则的值为( )
A.或4 B.或 C.或4 D.或4
7.(2023·浙江宁波·)已知二次函数,下列说法正确的是( )
A.点在该函数的图象上
B.当且时,
C.该函数的图象与x轴一定有交点
D.当时,该函数图象的对称轴一定在直线的左侧
8.(2023·浙江台州·)抛物线与直线交于,两点,若,则直线一定经过( ).
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
9.(2023·浙江杭州·)设二次函数是实数,则( )
A.当时,函数的最小值为 B.当时,函数的最小值为
C.当时,函数的最小值为 D.当时,函数的最小值为
10.(2023·浙江绍兴·)已知点在函数的图象上,,设,当且时,则下列结论正确的是( ).
A.m有最大值,也有最小值 B.m有最小值,但没有最大值
C.m有最大值,但没有最小值 D.m没有最小值,也没有最大值
二、填空题
11.(2019·浙江杭州·)某函数满足当自变量时,函数值;当自变量时,函数值,写出一个满足条件的函数表达式 .
12.(2014·浙江绍兴·)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是,则选取点B为坐标原点时的抛物线解析式是 .
13.(2010·浙江金华·)若二次函数的部分图象如图所示,
则关于x的一元二次方程的一个解,另一个解 ;
14.(2012·浙江绍兴·)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是 m.
15.(2015·浙江衢州·)如图,已知直线分别交x轴、y轴于点A、B,P是抛物线的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线于点Q,则当PQ=BQ时,a的值是 .
16.(2013·浙江衢州·)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种 棵橘子树,橘子总个数最多.
三、解答题
17.(2023·浙江绍兴·)已知二次函数.
(1)当时,
①求该函数图象的顶点坐标.
②当时,求的取值范围.
(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.
18.(2023·浙江湖州·)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)存在一次函数关系,部分数据如下表所示:
销售价格x(元/千克) 50 40
日销售量y(千克) 100 200
(1)试求出y关于x的函数表达式.
(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?
19.(2023·浙江杭州·)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:
… 0 1 2 3 …
… 1 1 …
(1)若,求二次函数的表达式;
(2)在(1)问的条件下,写出一个符合条件的的取值范围,使得随的增大而减小.
(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.
20.(2023·浙江·)根据以下素材,探究完成任务.
如何把实心球掷得更远?
素材1
小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面,当球到OA的水平距离为时,达到最大高度为.
素材2
根据体育老师建议,第二次练习时,小林在正前方处(如图)架起距离地面高为的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.
问题解决
任务1
计算投掷距离 建立合适的直角坐标系,求素材1中的投掷距离.
任务2
探求高度变化 求素材2和素材1中球的最大高度的变化量
任务3
提出训练建议 为了把球掷得更远,请给小林提出一条合理的训练建议.
21.(2024·浙江·)已知二次函数(b,c为常数)的图象经过点,对称轴为直线.
(1)求二次函数的表达式;
(2)若点向上平移2个单位长度,向左平移m()个单位长度后,恰好落在的图象上,求m的值;
(3)当时,二次函数的最大值与最小值的差为,求n的取值范围.
22.(2023·浙江绍兴·)如图,在平面直角坐标系中,二次函数图象的对称轴是直线,图象与轴交于,两点,点坐标为,直线经过点,且与轴交于点.
(1)填空:____;____;_____.
(2)将该二次函数图象向右平移个单位,使抛物线顶点落在直线上,试求的值.
(3)在(2)的条件下,设是轴上的一动点,若外接圆的圆心落在平移后的抛物线内部,试求的取值范围.
23.(2023·浙江台州·)【问题背景】
“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.
【实验操作】
综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:
流水时间t/min 0 10 20 30 40
水面高度h/cm(观察值) 30 29 28.1 27 25.8
任务1 分别计算表中每隔10min水面高度观察值的变化量.
【建立模型】
小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.
任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.
【反思优化】
经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.
任务3 (1)计算任务2得到的函数解析式的w值.
(2)请确定经过的一次函数解析式,使得w的值最小.
【设计刻度】
得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.
任务4 请你简要写出时间刻度的设计方案.
参考答案
1.【考点】求自变量的值或函数值、投球问题(实际问题与二次函数)
【分析】根据球弹起后又回到地面时,得到,解方程即可得到答案.
解:球弹起后又回到地面时,即,
解得(不合题意,舍去),,
∴球弹起后又回到地面所花的时间(秒)是2,
故选:D
【点评】此题考查了求二次函数自变量的值,读懂题意,得到方程是解题的关键.
2.【考点】y=ax +bx+c的图象与性质
【分析】画出二次函数的图象,利用数形结合的思想即可求解.
解:当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项C错误,选项D正确;
当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项A、B都错误;
故选:D
【点评】本题考查了二次函数的图象和性质,借助图象,利用数形结合的思想解题的解决问题的关键.
3.【考点】因式分解法解一元二次方程、y=ax +bx+c的图象与性质
【分析】根据抛物线的对称轴为直线可求出m的值,然后解方程即可.
抛物线的对称轴为直线,
,
解得,
关于x的方程为,
,
解得,
故选:D.
【点评】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握考点是解题的关键.
4.【考点】y=a(x-h) +k的图象和性质
【分析】根据y1<y2列出关于m的不等式即可解得答案.
解:∵点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上,
∴y1=(m-1-1)2+n=(m-2)2+n,
y2=(m-1)2+n,
∵y1<y2,
∴(m-2)2+n<(m-1)2+n,
∴(m-2)2-(m-1)2<0,
即-2m+3<0,
∴m>,
故选:B.
【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.
5.【考点】二次函数图象的平移
【分析】本题考查的是二次函数图象与几何变换,根据二次函数图象的平移规律即可解答.
解:将抛物线向上平移3个单位长度,得到的抛物线的解析式为.
故选:A.
6.【考点】y=a(x-h) +k的图象和性质
【分析】分两种情况讨论,并且利用二次函数的性质即可解答.
解:二次函数的对称轴为:直线,
(1)当时,当时,随的增大而减小,当,随的增大而增大,
当时,取得最小值,
,
;
(2)当时,当时,随的增大而增大,当,随的增大而减小,
当时,取得最小值,
,
.
故选:D.
【点评】本题主要考查二次函数的性质,掌握二次函数的性质以及分类讨论思想是解题的关键.
7.【考点】y=ax +bx+c的图象与性质、y=ax +bx+c的最值、抛物线与x轴的交点问题
【分析】根据二次函数的图象和性质,逐一进行判断即可.
解:∵,
当时:,
∵,
∴,
即:点不在该函数的图象上,故A选项错误;
当时,,
∴抛物线的开口向上,对称轴为,
∴抛物线上的点离对称轴越远,函数值越大,
∵,,
∴当时,有最大值为,
当时,有最小值为,
∴,故B选项错误;
∵,
∴该函数的图象与x轴一定有交点,故选项C正确;
当时,抛物线的对称轴为:,
∴该函数图象的对称轴一定在直线的右侧,故选项D错误;
故选C.
【点评】本题考查二次函数的图象和性质.熟练掌握二次函数的性质,是解题的关键.
8.【考点】一次函数、二次函数图象综合判断
【分析】根据已知条件可得出,再利用根与系数的关系,分情况讨论即可求出答案.
解:抛物线与直线交于,两点,
,
.
,
∵,
.
当,时,直线经过第一、三、四象限,
当,时,直线经过第一、二、四象限,
综上所述,一定经过一、四象限.
故选:D.
【点评】本题考查了二次函数的图象与系数的关系,解题的关键在于熟练掌握根与系数关系公式.
9.【考点】y=ax +bx+c的图象与性质、已知抛物线上对称的两点求对称轴、y=ax +bx+c的最值、求抛物线与x轴的交点坐标
【分析】令,则,解得:,,从而求得抛物线对称轴为直线,再分别求出当或时函数y的最小值即可求解.
解:令,则,
解得:,,
∴抛物线对称轴为直线
当时, 抛物线对称轴为直线,
把代入,得,
∵
∴当,时,y有最小值,最小值为.
故A正确,B错误;
当时, 抛物线对称轴为直线,
把代入,得,
∵
∴当,时,y有最小值,最小值为,
故C、D错误,
故选:A.
【点评】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.
10.【考点】y=ax +bx+c的最值
【分析】本题考查了二次函数图象的性质,先由题意得,进而得,进而可得结论.
解:∵点在函数的图象上,即,
∴,,
∴
,
∵,,
∴,
∴,
∴,
∴当时,m有最小值,但没有最大值,
故选:B.
11.【考点】求一次函数解析式、列二次函数关系式
【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.
符合题意的函数解析式可以是或或等,(本题答案不唯一)
故答案为如或或等.
【点评】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义.
12.【考点】二次函数图象的平移
解:根据题意,选取点A为坐标原点时的抛物线解析式是,则选取点B为坐标原点时的抛物线相当于把原抛物线向左平移12个单位.
∵原抛物线的顶点为(6,4),
∴根据平移的性质,平移后的抛物线的顶点为(,4),
∴选取点B为坐标原点时的抛物线解析式是.
故答案为:
13.【考点】根据二次函数图象确定相应方程根的情况
由图可知,对称轴为x=1,
根据二次函数的图象的对称性,
=1,
解得,x2=-1.
14.【考点】投球问题(实际问题与二次函数)
【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令,求出x的值,x的正值即为所求.
在函数式中,令,得
,解得,(舍去),
∴铅球推出的距离是10m.
故答案为10.
【点评】本题是二次函数的实际应用题,需要注意的是中3代表的含义是铅球在起始位置距离地面的高度;当时,x的正值代表的是铅球最终离原点的距离.
15.【考点】其他问题(二次函数综合)
【分析】先利用一次函数解析式求出B(0,3),再根据二次函数图象上点的坐标特征和一次函数图象上点的坐标特征,设,,分当点P在点Q上方时及当点P在点Q下方时两种情况分别表示出PQ,BQ,然后利用BQ=PQ列方程求解即可.
解:设点P的坐标为,
则点Q为,点B为(0,3),
当点P在点Q上方时,BQ==a,
PQ=﹣a2+2a+5﹣(﹣a+3)=﹣a2+a+2,
∵PQ=BQ,
∴a=﹣a2+a+2,
整理得:a2﹣3a﹣4=0,
解得:a=﹣1或a=4,
当点P在点Q下方时,BQ==a,
PQ=﹣a+3﹣(﹣a2+2a+5)=a2﹣a﹣2,
∵PQ=BQ,
∴a=a2﹣a﹣2,
整理得:a2﹣8a﹣4=0,
解得:a=4+2或a=4﹣2.
综上所述,a的值为:﹣1,4,4+2,4﹣2.
故答案为﹣1,4,4+2,4﹣2.
【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和一次函数图象上点的坐标特征是解题的关键.
16.【考点】其他问题(实际问题与二次函数)
【分析】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.根据题意设果园增种x棵橘子树,果园橘子总个数为y个,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,然后利用二次函数的性质求解即可.
解:∵果园增种x棵橘子数,
∴果园共有棵橘子树.
∵每多种一棵树,平均每棵树就会少结5个橘子,
∴这时平均每棵树就会少结个橘子,则平均每棵树结个橘子.
∵果园橘子的总产量为y,
∴.
∴当(棵)时,橘子总个数最多.
故答案为:10.
17.【考点】待定系数法求二次函数解析式、把y=ax +bx+c化成顶点式、y=ax +bx+c的图象与性质、y=ax +bx+c的最值
【分析】(1)①将代入解析式,化为顶点式,即可求解;
②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;
(2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.
(1)解:①当时,,
∴顶点坐标为.
②∵顶点坐标为.抛物线开口向下,
当时,随增大而增大,
当时,随增大而减小,
∴当时,有最大值7.
又
∴当时取得最小值,最小值;
∴当时,.
(2)∵时,的最大值为2;时,的最大值为3,
∴抛物线的对称轴在轴的右侧,
∴,
∵抛物线开口向下,时,的最大值为2,
∴,
又∵,
∴,
∵,
∴,
∴二次函数的表达式为.
【点评】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.
18.【考点】其他问题(一次函数的实际应用)、销售问题(实际问题与二次函数)
【分析】(1)设y与x之间的函数关系式为,由表中数据即可得出结论;
(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.
(1)解:设y关于x的函数表达式为.
将和分别代入,得:
,
解得:,
∴y关于x的函数表达式是:;
(2)解:,
∵,
∴当时,在的范围内,
W取到最大值,最大值是2250.
答:销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元.
【点评】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.
19.【考点】求不等式组的解集、待定系数法求二次函数解析式、y=ax +bx+c的图象与性质
【分析】(1)用待定系数法求解即可.
(2)利用抛物线的对称性质求得抛物线的对称轴为直线;再根据抛物线的增减性求解即可.
(3)先把代入,得,从而得,再求出,,,从而得,然后m、n、p这三个实数中,只有一个是正数,得,求解即可.
(1)解:把,代入,得
,解得:,
∴.
(2)解:∵,在图象上,
∴抛物线的对称轴为直线,
∴当时,则时,随的增大而减小,
(3)解:把代入,得
,
∴
∴
把代入得,,
把代入得,,
把代入得,,
∴,
∵m、n、p这三个实数中,只有一个是正数,
∴,解得:.
【点评】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.
20.【考点】待定系数法求二次函数解析式、求抛物线与x轴的交点坐标、投球问题(实际问题与二次函数)
【分析】任务一:建立直角坐标系,由题意得:抛物线的顶点坐标为,设抛物线的解析式为,过点,利用待定系数法求出解析式,当时求出x的值即可得到;
任务二:建立直角坐标系,求出任务二的抛物线解析式,得到顶点纵坐标,与任务一的纵坐标相减即可;
任务三:根据题意给出合理的建议即可.
任务一:建立如图所示的直角坐标系,
由题意得:抛物线的顶点坐标为,
设抛物线的解析式为,过点,
∴,
解得,
∴,
当时,,
得(舍去),
∴素材1中的投掷距离为4m;
(2)建立直角坐标系,如图,
设素材2中抛物线的解析式为,
由题意得,过点,
∴,
解得,
∴
∴顶点纵坐标为,
(m),
∴素材2和素材1中球的最大高度的变化量为;
任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.
【点评】此题考查了二次函数的实际应用,求函数解析式,求抛物线与坐标轴的距离,正确理解题意建立恰当的直角坐标系是解题的关键.
21.【考点】待定系数法求二次函数解析式、y=ax +bx+c的图象与性质
【分析】本题主要考查了待定系数法,二次函数的图象与性质,
(1)采用待定系数法即可求解二次函数关系式;
(2)先求出平移后点B的坐标,然后把坐标代入解析式即可;
(3)分为,时,时,建立方程解题即可.
(1)解:设二次函数的解析式为,把代入得,
解得,
∴;
(2)解:点B平移后的点的坐标为,
则,解得或(舍),
∴m的值为;
(3)解:当时,
∴最大值与最小值的差为,解得:不符合题意,舍去;
当时,
∴最大值与最小值的差为,符合题意;
当时,
最大值与最小值的差为,解得或,不符合题意;
综上所述,n的取值范围为.
22.【考点】二次函数图象的平移、y=ax +bx+c的图象与性质、判断三角形外接圆的圆心位置、其他问题(二次函数综合)
【分析】(1)将点坐标代入直线中求出,根据二次函数的对称轴和经过点得到方程组,解方程即可求出、;
(2)将抛物线化为顶点式,平移后得到平移后的顶点坐标,再将顶点坐标代入直线求解;
(3)先求出平移后的解析式,设抛物线对称轴与轴交于点,根据题意易得到外接圆的圆心必在边的中垂线上,设该中垂线交抛物线于点,,进而求出点,的坐标,过点,分别作轴的垂线,垂足分别为,,得到这两点的横坐标,进而求出和的横坐标,即可求出的取值范围.
(1)解:点坐标为,直线经过点,
,
.
二次函数图象的对称轴是直线,是二次函数图象是的点,
,,
联立组成方程组为,
解得.
故答案为:;;.
(2)解:由题意知:抛物线解析式为,即.
将的图象向右平移个单位后得到,
其顶点坐标为.
∵顶点恰好落在直线上,
,
.
(3)解:由题意知:平移后的抛物线解析式为,顶点.
设抛物线对称轴与轴交于点.
,
为等腰直角三角形.
点在轴上,
则外接圆的圆心必在边的中垂线上.
设该中垂线交抛物线于点,.
由可知线段的中点坐标为,
,故可求得该中垂线解析式为.
∴解方程组
解得:.
即,两点的横坐标分别为.
过点,分别作轴的垂线,垂足分别为,,
则,两点的横坐标分别为.
.
.
从而点的横坐标为.
同理.
.
从而点的横坐标为.
的取值范围是.
【点晴】本题主要考查了二次函数的综合,二次函数的图象和性质,函数解析式的求法,二次函数平移规律,二次函数与一次函数的交点,理解相关知识是解答关键.
23.【考点】求一次函数自变量或函数值、其他问题(一次函数的实际应用)、其他问题(实际问题与二次函数)
【分析】任务1:根据表格每隔10min水面高度数据计算即可;
任务2:根据每隔10min水面高度观察值的变化量大约相等,得出水面高度h与流水时间t的是一次函数关系,由待定系数法求解;
任务3:(1)先求出对应时间的水面高度,再按要求求w值;
(2)设,然后根据表格中数据求出此时w的值是关于k的二次函数解析式;由此求出w的值最小时k值即可;
任务4:根据高度随时间变化规律,以相同时间刻画不同高度即可,类似如数轴三要素,有原点、正方向与单位长度.最大量程约为294min可以代替单位长度要素.
解:任务1:变化量分别为,;;
;;
任务2:设,
∵时,,时,;
∴
∴水面高度h与流水时间t的函数解析式为.
任务3:(1)当时,,
当时,,
当时,,
当时,,
当时,,
∴
.
(2)设,则
.
当时,w最小.
∴优化后的函数解析式为.
任务4:时间刻度方案要点:
①时间刻度的0刻度在水位最高处;
②刻度从上向下均匀变大;
③每0.102cm表示1min(1cm表示时间约为9.8min).
【点评】本题主要考查一次函数和二次函数的应用、方差的计算,熟练掌握待定系数法求解析式及一次函数的函数值、二次函数的最值是解题的关键.
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()
0 条评论