(15)光合作用——2023届高考生物二轮复习热点题型限时练(有解析)
(15)光合作用——2023届高考生物二轮复习热点题型限时练
答题时间:25分钟
1.根据光合作用中CO2的固定方式不同,可将植物分为C3植物和C4植物等类型。C4植物的CO2补偿点比C3植物的低。CO2补偿点通常是指环境CO2浓度降低导致光合速率与呼吸速率相等时的环境CO2浓度。回答下列问题:
(1)不同植物(如C3植物和C4植物)光合作用光反应阶段的产物是相同的,光反应阶段的产物是____(答出3点即可)。
(2)正常条件下,植物叶片的光合产物不会全部运输到其他部位,原因是____(答出1点即可)。
(3)干旱会导致气孔开度减小,研究发现在同等程度干旱条件下,C4植物比C3植物生长得好。从两种植物CO2补偿点的角度分析,可能的原因是____。
(4)C4植物固定CO2最初产物是四碳化合物,所以称这种途径为C4途径。C4植物可以在外界CO2浓度很低时固定CO2,不断运输到维管束鞘细胞中,使CO2增加,从而使卡尔文循环得以进行。据此推测PEP梭化酶固定CO2的能力比RuBP羧化酶(催化CO2和C5结合的酶)____。C4途径是一个___的途径,是植物适应热带环境的主要途径。
(5)CAM植物(例如仙人掌)多分布在干旱环境,晚上气孔开放从外界吸收CO2,并储存在液泡中。白天气孔关闭或气孔开度小,储存在液泡中的CO2释放出来,合成有机物。C4植物和CAM植物只是在C3途径前增加了C4途径,由于C4途径可以利用低CO2浓度,因此,____途径是后来逐渐进化而来的。C4植物和CAM植物都要进行C4途径和C3途径,C4植物是在____分别进行C3途径和C4途径,而CAM植物是在___分别进行C3途径和C4途径。
2.20世纪50年代,卡尔文阐明C3途径之后人们曾认为不管是藻类还是高等植物,其CO2固定与还原都是按C3途径进行的,直到1965年,美国夏威夷甘蔗栽培研究所发现用14C标记CO2后,14C首先出现在一种C4酸中,而后才出现在C3酸中,后来人们将这类光合作用时CO2中的C首先转移到C4酸中,然后才转移到C3酸中的植物,称为C4植物,将其固定CO2的途径叫作C4途径。现发现在蕨类和裸子植物中没有C4植物,只有被子植物中才有C4植物,图示为C4植物中C4途径和C3途径的关系。回答下列问题:
(1)据图中信息可知,C4植物光合作用发生在__________细胞中,其CO2中的C转移到(CH2O)的途径是(用符号和箭头表示)____________________,并且该植物细胞内CO2中的C的转移过程__________(填“需要”或“不需要”)消耗能量,而有机物在__________细胞中产生。
(2)若我们将C4植物的一种牧草和C3植物的一种牧草,共同种植于同一密闭玻璃罩内,二者处于竞争优势的将是__________的牧草,原因是______________________________,据此我们也可以推知在高温、干旱环境中更适宜生存的是__________植物。
(3)据题意知,C3植物和C4植物中进化程度较高的是__________植物。
3.下图1为某高等植物叶肉细胞内光合作用与有氧呼吸的部分过程示意图,其中①~⑤表示相关生理过程,a~f表示相关物质;图2为该植物在CO2浓度适宜的情况下,单位时间内气体的吸收量或消耗量随温度变化的曲线图,请据图分析并回答问题:
(1)图1中f代表________,图2中A点时能发生图1中过程________(填数字序号)。研究者用含18O的葡萄糖追踪叶肉细胞有氧呼吸过程中的氧原子,其转移途径是C6H12O6→________(用图1中字母和箭头表示)。
(2)图2中B点时,比较图1中过程②消耗的d和过程⑤消耗的b,两者的数量关系是________(填“db”“d=b”或“d=2b”)。
(3)图2中C点时植物的总光合速率________(填“大于”“等于”或“小于”)D点时总光合速率,原因是__________________________________________。
(4)据图2分析,限制AC段CO2吸收速率的主要因素是________。温室栽培该植物时,若一天中保持光照12小时,其余时间黑暗,为获得最大经济效益,光照时应控制的最低温度为________。
4.1920年,德国科学家(OttoWarburg)发现光照条件下植物会出现“光呼吸”现象,黑暗时被抑制。“光呼吸”的产生与Rubisco酶的特殊性质有关,CO2浓度较高时,该酶催化C5与CO2反应,完成光合作用;O2浓度较高时,该酶催化C5与O2反应,产物经一系列变化后到线粒体中会产生CO2(如下图)。在相同浓度下,Rubisco酶对CO2亲和力更高,如果在高温条件下对O2亲和力则会更高。
(1)叶肉细胞内Rubisco酶的存在场所为_______,Rubisco酶既可催化C5与CO2反应,也可催化C5与O2反应,这与酶的专一性相矛盾,其“两面性”可能因为在不同环境中酶_____发生变化导致其功能变化。
(2)在较高CO2浓度环境中,Rubisco酶所催化反应的产物是______,该产物进一步反应还需要条件是______(填物质名称或符号缩写)。
(3)研究表明,光呼吸会消耗光合作用新形成有机物的1/4,因此提高农作物产量需降低光呼吸。某同学提出了如下减弱光呼吸,提高农作物产量的措施:①适当降低温度;②适当提高CO2浓度;不能达到目的措施是_____(填序号),理由是__________。
(4)与光呼吸相区别,研究人员常把细胞呼吸称为“暗呼吸”。请从反应发生条件和场所两方面,列举光呼吸与暗呼吸的不同:____________,____________。
答案以及解析
1.答案:(1)O2、NADPH(还原型辅酶Ⅱ)、ATP
(2)自身呼吸消耗(或建造植物体结构)
(3)C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2
(4)强;CO2浓缩(增多)
(5)C4;不同空间;不同时间
解析:(1)光合作用光反应的产物有O2、NADPH(还原型辅酶Ⅱ)、ATP。
(2)正常条件下,植物叶片的光合产物不会全部运输到其他部位,有一部分会用于自身呼吸消耗或建造植物体结构。
(3)因为C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2,所以在同等程度干旱条件下,C4植物比以植物生长得好。
(4)C4植物可以在外界CO2浓度很低时固定CO2,不断运输到维管束鞘细胞中,使CO2增加,从而使卡尔文循环得以进行,所以PEP羧化酶固定CO2的能力比RuBP羧化酶(催化CO2和C5结合的酶)强。
(5)C4植物和CAM植物只是在C3途径前增加了C4途径,C4途径可以利用低CO2浓度,所以C4途径是后来逐渐进化而来的,C4植物可以更好地适应环境。据图分析,C4植物是在不同空间里分别进行C3途径和C4途径,而CAM植物是在不同时间里分别进行C3途径和C4途径。
2.答案:(1)叶肉细胞和维管束鞘;CO2→C4→CO2→C3→(CH2O);需要;维管束鞘
(2)C4植物;密闭环境中CO2的浓度逐渐降低,而C4植物固定CO2的酶与CO2的亲和力高,故其利用低浓度的CO2的能力强于C3植物;C4
(3)C4
解析:(1)据题图信息可知,C4植物光合作用发生在叶肉细胞和维管束鞘细胞中,其CO2中的C先被C3转移到C4,后由C4转移到CO2,此CO2中的C又被C5转移到C3,最后经C3转移到(CH2O),即该转移途径是CO2→C4→CO2→C3→(CH2O),其形成的(CH2O)中储存了能量,且转移途径中磷酸烯醇式丙酮酸的形成需消耗ATP,故可确定该植物细胞内CO2的转移过程需要消耗能量,由题图信息可知有机物在维管束鞘细胞中产生。
(2)若我们将C4植物的一种牧草和C3植物的一种牧草共同种植于同一密闭玻璃罩内,因植物光合作用的进行,密闭环境中CO2的浓度逐渐降低,而C4植物固定CO2的酶与CO2的亲和力高,即C4植物利用低浓度CO2的能力强,是二者中处于竞争优势的牧草。高温、干旱环境中植物的气孔极易关闭,即植物易处于可利用的CO2浓度较低的环境,此时C4植物更适宜生存。
(3)结合题干“现发现在蕨类和裸子植物中没有C4植物,只有被子植物中才有C4植物”的信息可知,C3植物和C4植物中进化程度较高的是C4植物。
3、
(1)答案:[H];①②③④⑤;e→d
解析:由分析可知:图1中f代表[H],图2中A点时表示呼吸速率和光合速率相等,此时能发生光合作用和呼吸作用的各个阶段,即图1中的过程①②③④⑤研究者用含18O的葡萄糖追踪叶肉细胞有氧呼吸过程中氧原子,则葡萄糖经过有氧呼吸的过程进入丙酮酸、二氧化碳,故其转移途径可表示为C6H12O6→e→d。
(2)答案:d=2b
解析:图2中B点时,表示在该温度调节下,植物光合作用吸收的二氧化碳和细胞呼吸消耗的二氧化碳相等,即净光合速率与呼吸速率相等,由真光合速率=净光合速率+呼吸速率;故此时图1②过程消耗的d(真光合速率)=⑤(呼吸作用)消耗的b+净光合速率。即d=2b。
(3)答案:小于;两点的净光合速率相等,但D点时呼吸速率更高
解析:图2中,C点和D点净光合速率相等,但是D点呼吸速率大于C点的呼吸速率,又因总光合速率=净光合速率+呼吸速率,故可推知C点时植物的总光合速率小于D点时总光合速率。
(4)答案:温度;20°C
解析:图2中,随着温度的升高,AC段的二氧化碳吸收速率在不断升高,故限制AC段二氧化碳吸收速率的主要因素是温度。温室栽培该植物时,若一天中保持光照12小时,其余时间黑暗,为获得最大经济效益,即意味着图中的净光合速率最大时对应的温度值,不难看出,20°C时达到最大,而此后温度上升,净光合速率不再增加,而此时的呼吸速率还在增加,故光照时应将温度控制在20°C。
4.答案:(1)叶绿体基质;空间结构
(2)C3;[H]和ATP(或者答“NADPH和ATP”和中文名称)
(3)①;温度降低,酶活性减弱,光呼吸减弱的同时,光合作用也减弱,达不到提高农作物产量的目的
(4)光呼吸需要光,暗呼吸有无光都可以进行;光呼吸的场所是叶绿体基质和线粒体,暗呼吸场所是细胞质基质和线粒体
解析:(1)题意显示Rubisco酶能催化C5与CO2反应,该反应进行的场所是叶绿体基质,故该酶存在场所应为叶绿体基质,Rubisco酶既可催化C5与CO2反应,也可催化C5与O2反应,这与酶的专一性相矛盾,根据结构与功能相适应的原理可知,其“两面性”的原因可能是在不同环境中酶空间结构发生变化导致的。
(2)在较高CO2浓度环境中,Rubisco酶催化C5与CO2反应生成C3,接下来进行C3的还原,该反应的进行还需要光反应提供的NADPH、ATP。
(3)①适当降低温度,酶活性减弱,光呼吸减弱的同时,光合作用也减弱,达不到增产的目的,因此不能通过①适当降低温度来达到增产的目的:而可以通过②适当提高CO2浓度,Rubisco酶催化C5与CO2反应,完成光合作用,进而提高了光合作用速率而到处增产的目的。
(4)光呼吸与细胞呼吸区别表现为两个方面,从反应条件来看,光呼吸需要在光下进行,而细胞呼吸(暗呼吸)有光无光均可进行;从反应场所来看,光呼吸的场所为叶绿体基质和线粒体,暗呼吸的场所为细胞质基质和线粒体。
2
0 条评论