2019衡中同卷调研卷全国一卷b

- 编辑:答案汇总网 -

2019衡中同卷调研卷全国一卷b

  2019衡中同卷调研卷全国一卷b,查看查看衡中同卷答案解析请添加QQ群:702065881

 

衡中同卷

  (1)向量的加法满足三角形,平行四边形和多边形法则。用加法的三角形法则和多边形法则时要保证向量之间首尾相接,然后从第一个向量的始点指向最后一个向量的终点得到的向量就是和向量。多边形法则是三角形法则的拓展,关键都是向量要首尾相接。坐标形式相加是横纵坐标分别相加。

  (2)向量的减法满足三角形法则。用减法的三角形法则时要保证两个向量始点重合,从减数向量的终点指向被减数向量的终点得到的向量就是差向量。在两向量共线时,加减法的三角形法则都成立。坐标形式相减是横纵坐标分别相减。

  (3)向量的数乘运算是实数和向量相乘,乘法符号是点。数乘运算的效果是向量长度的伸缩和方向的改变,要分实数大于0、小于0、等于0三种情况讨论。乘完之后的向量和原向量一定共线。坐标形式的数乘是实数与横纵坐标都相乘。

  5、平面向量的两个重要定理:

  (1)共线向量定理:向量b不是零向量时,“向量a等于一个实数乘以向量b”等价于“向量a与向量b共线,且实数系数唯一”。注意:向量b若可能是零向量时,等价关系不成立,但是若已知两向量满足数乘关系可以推出两向量平行。当两个向量是用基向量表示时,两向量平行则基向量的系数对应成比例;当两个向量是坐标形式时,这个定理对任意向量(包括零向量)都等价,即:“两向量平行”等价于“坐标的内积等于外积”。

  (2)三点共线:三点共线问题就是向量共线的问题,等价于两种向量的形式,哪一种好用就用哪一种。一、等价于用三个点任意构造两个向量,两个向量满足数乘关系(或坐标满足内积等于外积),建立等式;二、等价于以第四个点为公共始点,三个点为终点构造三个向量,其中一个向量用另两个向量线性表示,系数之和为1。还要注意三角形中的中线向量定理,还有重心向量的形式,还有中点坐标公式和重心坐标公式,中线和重心是三角形中重要的量。

  (3)平面向量基本定理:平面内任意的两个不共线向量都可以做平面内的一组基向量,平面内的任意向量都可以由这一组基向量线性表示,且基向量的系数唯一。利用这个系数唯一求向量的系数是求系数问题的重要方法。