衡中同卷分科综合卷数学理2
- 编辑:答案汇总网 -衡中同卷分科综合卷数学理2
衡中同卷分科综合卷数学理2,查看衡中同卷分科综合卷各科试卷及其答案请关注微信号:趣找答案
极坐标与参数方程公式:x=ρcosθ,y=ρsinθ,tanθ=y/x,x²+y²=ρ²。坐标系与参数方程公式x=ρcosθ,y=ρsinθtanθ=y/x,x²+y²=ρ²有些曲线的方程在直角坐标里面不太好处理,于是我们把它换在极坐标中处理。例如经过上面式子的变换:以原点为圆心的圆的方程:ρ=R双曲线,椭圆,抛物线的极坐标统一形式:ρ=eP/(1-ecosθ),P为焦准距,e为离心率。常见参数方程极坐标方程用极坐标系描述的曲线方程称作极坐标方程,通常用来表示ρ为自变量θ的函数。极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)=ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)=ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)=ρ(θ),则曲线相当于从极点逆时针方向旋转α°。圆在极坐标系中,圆心在(r,φ)半径为r的圆的方程为ρ=2rcos(θ-φ)另:圆心M(ρ,θ)半径r的圆的极坐标方程为:(ρ)²+ρ²-2ρρcos(θ-θ)=r²根据余弦定理可推得。直线经过极点的射线由如下方程表示θ=φ,其中φ为射线的倾斜角度,若m为直角坐标系的射线的斜率,则有φ=arctanm。任何不经过极点的直线都会与某条射线垂直。这些在点(r′,φ)处的直线与射线θ=φ垂直,其方程为r′(θ)=r′sec(θ-φ)。玫瑰线极坐标的玫瑰线是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述,方程如下:r(θ)=acoskθ或r(θ)=asinkθ,如果k是整数,当k是奇数时那么曲线将会是k个花瓣,当k是偶数时曲线将是2k个花瓣。如果k为非整数,将产生圆盘(disc)状图形,且花瓣数也为非整数。注意:该方程不可能产生4的倍数加2(如2,6,10……)个花瓣。变量a代表玫瑰线花瓣的长度。阿基米德螺线右图为方程r(θ)=θfor0<θ<6π的一条阿基米德螺线。阿基米德螺线在极坐标里使用以下方程表示:r(θ)=a+bθ,改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。阿基米德螺线有两条螺线,一条θ>0,另一条θ<0。两条螺线在极点处平滑地连接。把其中一条翻转90°/270°得到其镜像,就是另一条螺线。圆锥曲线圆锥曲线方程如下:r=ep/(1+ecosθ)其中l表示半径,e表示离心率。如果e<1,曲线为椭圆,如果e=1,